# Chem 1045 Lecture Notes

# Chemistry & Chemical Reactivity Kotz/Treichel/Townsend, 8<sup>th</sup> Ed

These Notes are to <u>SUPPLEMENT</u> the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, <u>READ THE CHAPTER</u> prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test! The author is not responsible for typos in these notes.

# Chapter 2, Atoms Molecules and Ions

Memorize: Table 2.4 Polyatomic Naming

**Periodic Table:** Dmitri Mendeleev set up the 1<sup>st</sup> periodic table in 1870 based on the periodicity of the chemistry of the elements. Elements were placed in the table based on their atomic weight. He noted elements in rows had similar properties. He left empty spaces for elements that he did not know about, but calculated would occupy a spot based on atomic weight.

#### 2.1 Atomic Structure

Rutherford's (1871-19370 model of the atom basis of modern atomic theory:

- Atoms are made of subatomic particles Protons, Neutrons, Electrons.
- The larger Protons and Neutrons are in the center of a very small nucleus, the smaller electron surrounds the nucleus.
- The center of the atom is positively charged, the outside negatively.
- The number of electrons equals the number of protons.



**2.2 Atomic Number & Mass** John Dalton, beginning of 19<sup>th</sup> century, suggested the elements involve atoms and proposed a relative scale based on atom mass – The Periodic Table, Hydrogen = 1 *The current standard is Carbon 12.* 6.023 x 10<sup>23</sup> atoms of <sup>12</sup>C weight 12.00 g

All atoms of a given element have the same number of protons in the nucleus

| Atomic Mass Unit        | = | u | = $1/12$ the mass of ${}^{12}C$ | $1 \text{ amu} = 1.661 \text{ x} 10^{-24} \text{ g}$ |
|-------------------------|---|---|---------------------------------|------------------------------------------------------|
| Mass Number             | = | Α | = number of protons and         | d neutrons in the nucleus                            |
| Atomic Number           | = | Ζ | = number of protons in t        | the nucleus                                          |
| Atomic Weight           | = |   | = the average mass of a         | representative sample                                |
| George W.J. Kenney, Jr. |   |   | Page 1 of 19                    | 26-Aug-13 Chapter 2                                  |

#### Mass number $\rightarrow A X \leftarrow Element symbol$ Atomic number $\rightarrow Z X \leftarrow Element symbol$

Do Some Examples (see the periodic table): H, He, Na 11 protons, 12 neutrons, U 238 = 92 protons, 146 neutrons, Iron with 30 neutrons, Ni with 32 neutrons. Discuss  $^{64}$  Zn. What has 12 neutrons and A = 23?

|          | Ν                         | lass              | _      |                                |
|----------|---------------------------|-------------------|--------|--------------------------------|
| Particle | Grams                     | Atomic Mass Units | Charge | Symbol                         |
| Electron | $9.109383 	imes 10^{-28}$ | 0.0005485799      | 1-     | $_{-1}^{0}$ e or e $^{-}$      |
| Proton   | $1.672622 	imes 10^{-24}$ | 1.007276          | 1+     | $^{1}_{1}$ p or p <sup>+</sup> |
| Neutron  | $1.674927 	imes 10^{-24}$ | 1.008665          | 0      | <sup>1</sup> n or n            |

#### Example 2.1 Atomic Composition.

What is the composition of an atom of phosphorus with 16 neutrons?

What Is its mass number?

What is the symbol for such an atom?

What is the mass of this phosphorous atom related to the mass of a carbon atom with a mass number of 12?

| 2.3 Isotopes are atoms with th | e same atomic number and different mass numbers.     | They differ by |
|--------------------------------|------------------------------------------------------|----------------|
| the number of neutrons.        | <sup>10</sup> B = 5 protons, 5 neutrons, 5 electrons |                |
|                                | $^{11}B = 5$ protons, 6 neutrons, 5 electrons        |                |

U 238 vs U 235.  ${}^{1}_{1}H$  = Hydrogen,  ${}^{2}_{1}H$  = Deuterium (D) or heavy water,  ${}^{3}_{1}H$  = Tritium (T)

What are the p,n,e- count for <sup>12</sup>C and <sup>14</sup>C (Radioactive carbon)

**Isotope Abundance:** Water or H2O has 99.985% <sup>1</sup><sub>1</sub>H and 0.015% <sup>2</sup><sub>1</sub>H

**% Abundance** = 100% \* # atoms of a given isotope / total number of atoms of all isotopes

Boron has  ${}^{10}B$  19.91% and  ${}^{11}B$  of 80.09% or out of 10,000 B atoms, 1991 are  ${}^{10}B$  and 8009 are  ${}^{11}B$ 

# Mass of isotopes via **Mass Spec**. A Mass Spec separates ions of different mass can charge in a gaseous sample of ions.



Atomic Weight of an element is the average mass of a representative sample.



Boron has 2 isotopes:

<sup>10</sup>B at 19.91% and <sup>11</sup>B at 80.09%

Atomic Weight of B = (19.91 / 100) \* 10.0129 + (80.09 / 100) \* 11.0093 = 10.81 [grams/mole]

| Table 2.2 Isotope Abundance and Atomic Weight |                  |                  |                |                  |                          |
|-----------------------------------------------|------------------|------------------|----------------|------------------|--------------------------|
| Element                                       | Symbol           | Atomic<br>Weight | Mass<br>Number | Isotopic<br>Mass | Natural<br>Abundance (%) |
| Hydrogen                                      | Н                | 1.00794          | 1              | 1.0078           | 99.985                   |
|                                               | D*               |                  | 2              | 2.0141           | 0.015                    |
|                                               | I†               |                  | 3              | 3.0161           | 0                        |
| Boron                                         | В                | 10.811           | 10             | 10.0129          | 19.91                    |
|                                               |                  |                  | 11             | 11.0093          | 80.09                    |
| Neon                                          | Ne               | 20.1797          | 20             | 19.9924          | 90.48                    |
|                                               |                  |                  | 21             | 20.9938          | 0.27                     |
|                                               |                  |                  | 22             | 21.9914          | 9.25                     |
| Magnesium                                     | Mg               | 24.3050          | 24             | 23.9850          | 78.99                    |
|                                               |                  |                  | 25             | 24.9858          | 10.00                    |
|                                               |                  |                  | 26             | 25.9826          | 11.01                    |
| *D = deuterium;                               | T = tritium, rac | lioactive.       |                |                  |                          |

**Example 2.2** Bromine 1<sup>st</sup> mass = 78.91838 u at 50.69%, 2<sup>nd</sup> mass = 80.916291 at 49.31 %. What is the Atomic Weight?

Chlorine: <sup>35</sup>Cl is 34.96885 u at 75.77% and <sup>37</sup>Cl is 36.96590 at 24.23%. What is its Atomic Wt?

**Example 2.3** Antimony, Sb has 2 stable isotopes:  ${}^{121}Sb = 120.904 \text{ u}$  and  ${}^{123}SB = 122.904 \text{ u}$  What are the relative abundances of the isotopes? Its Atomic Wt is 121.760 u

# 2.5 Peroidic Table

**Mendeleev (1824 – 1907)** If the elements were arranged by *increasing atomic mass*, elements with similar properties appear in a regular pattern. Elements with similar properties are in vertical columns.

**Periodicity** is the periodic repetition of the properties of the elements (rows).

Left empty space where he believed an element should be (Si, Sn, Ge)

Law of Chemical Periodicity: properties of elements are periodic functions of atomic number.

Features of the Periodic TableSEE ELECTRON CONFIGURATION AT END

**Groups or Families**: Vertical columns, they have similar physical and chemical properties and are numbered 1 -> 8, each with an A or B.

- A Main Group elements
- **B** Transition Elements

**Periods** Horizontal rows and are numbered beginning with 1.

George W.J. Kenney, Jr.

Page 4 of 19



**Metals** found on the left side of the table. At STP are solids, conduct electricity, and are ductile and malleable, can form alloys (mixtures of more than one metal).

- **Nonmetals** on the right side of a diagonal line (B to Te). They have a wide variety of properties, solids, liquid (Bromine) and gases, do not conduct electricity
- **Semimetals** or **Metalloids**, elements on the B to Te diagonal line has both metal and nonmetal characteristics.

Alkali Metals Group 1A. solids at RT and are reactive, found combined as a compound not as the pure element

**Alkaline Earth metals Group 2A**, also found only as a compound, not as the pure element. Except for Be, all elements react with water.  $Mg = 7^{th}$  and  $Ca = 5^{th}$  are the most abundant element in the earth crust. Ca is in our teeth and bones, as limestone (CaCO2), in corals, shells, marble, and Chalk. Radium (Ra) is radioactive and used to treat cancers.

**Group 3A** important elements are Aluminum 8.2% of the earth crust – most abundant metal on earth, Boron a metalloid found in Borax (20 mule team borax).

**Group 4A** starts the nonmetals: Carbon, metalloid Silicon and Germanium and the metals Tin and Lead. Carbon is an **Allotrope** – can exist in different distinct forms (graphite, diamond, buckyballs)

**Group 5A** has the diatomic gas N2 which is important in "nitrogen fixation" and in the lab as amine compounds such as ammonia NH3. Phosphorus is important in life in bones and DNA. Phosphoric Acid is used in food products and soft drinks and used to make fertilizers. N and P are nonmetals, As and Sb metalloids and B is a metal.

**Group 6A** has Oxygen with is 20% of the earth's atmosphere and forms important oxides such as DiHydrogen Oxide (H2O), Sand (SiO2) and many other metal oxides. Sulfuric Acid (H2SO4) is manufactured in larger amounts than any other compound in the world. Oxygen, sulfur and selenium are nonmetals, tellurium is a metalloid, and polonium is a radioactive metal. Oxygen **allotropes are** O2 and O3.

**Groups 7A** contains all nonmetals and are called halides. They exist as diatomic molecules: F2. They are reactive and readily form salts.

**Group 8A** are the least reactive, the noble gases or inert gases and are not very abundant on earth. Helium is the 2<sup>nd</sup> most abundant element in the universe and hydrogen is the 1<sup>st</sup>. We are running out of He!! **(DISCUSS)**  **Transition elements** fit between Groups 2A and 3A, in th 4<sup>th</sup> through 7<sup>th</sup> period, all are metals, most occur naturally as compounds except Cu, Ag, Au and Pt are found as the pure elements.

**Lanthanides and Actinides** are 2 rows that fit between elements 57 -72 and 89 – 104. **Polyatomic Elements:** Hydrogen (H2), Nitrogen (N2), Oxygen (O2) and all the halides.

| Rank | Element   | Abundance<br>(ppm)* |
|------|-----------|---------------------|
| 1    | Oxygen    | 474,000             |
| 2    | Silicon   | 277,000             |
| 3    | Aluminum  | 82,000              |
| 4    | Iron      | 41,000              |
| 5    | Calcium   | 41,000              |
| 6    | Sodium    | 23,000              |
| 7    | Magnesium | 23,000              |
| 8    | Potassium | 21,000              |
| 9    | Titanium  | 5,600               |
| 10   | Hydrogen  | 1,520               |

Oxygen O 49.2% Silicon Si 25.7% Aluminum Al 7.50% Iron Fe 4.71% Calcium Ca 3.39% Sodium Na 2.63% Potassium K 2.40% Magnesium Mg 1.93% Hydrogen H 0.87%

#### 2.6 Formulas

**Molecule** is the smallest identifiable units into which some pure substances can be divided and still retain the composition and chemical properties of the substance.

**Molecular formula** describes the composition of the molecule: CO2, H2O

**Condensed formula** indicates how certain atoms are grouped together: CH3-CH2-CH2OH

**Structural formulae** gives the detail of how al the atoms are attached within a molecule

| NAME              | MOLECULAR<br>FORMULA            | CONDENSED<br>FORMULA | STRUCTURAL<br>FORMULA   | MOLECULAR MODEL |
|-------------------|---------------------------------|----------------------|-------------------------|-----------------|
| Ethanol           | C <sub>2</sub> H <sub>6</sub> O | CH₃CH₂OH             | н н<br>н—С—С—О—Н<br>н н |                 |
| Dimethyl<br>ether | C <sub>2</sub> H <sub>6</sub> O | CH3OCH3              | H H<br>H-C-0-C-H<br>H H | XX              |

# **Molecular Models**

Ball and Stick are different colored spheres which represent atoms and sticks to represent bonds

**Molecular Model / Space filling models** show the connection of elements and the area of the electron cloud.



**Water's** unique properties of ice is less dense the liquid water is important because ice will float on large bodies of water instead of sinking. Why is this important? Water vapour, clouds, helps cool inland areas. How?

**2.7 Ionic Compounds** consist of ions, atoms or groups of atoms that bear a positive or negative electric charge. These differ from Molecular Compounds that do not have charges: CH4 Methane

Ions are elements that have gained or lost electrons, thus possess an electric charge



**Cations** are atoms that have lost an electron thus have a positive charge. Metals (Left side and the middle of the Periodic Table) loose electrons to form Cations.

**Anions** are atoms that have gained an electron, thus have a negative charge. Nonmetals (Right side of the Periodic Table) gain electrons to form Anions.

**Monatomic Ions** are single atoms that have lost or gained electrons. Metals lose electrons to form Cations; nonmetals gain electrons to form Anions. The Cations and Anions examples above are Monoatomic Ions – consisting on one atom or element. (See Polyatomic below)



| Group | Metal Atom          | <b>Electron Change</b> | <b>Resulting Metal Cation</b>                   |
|-------|---------------------|------------------------|-------------------------------------------------|
| 1A    | Na (11 prot, 11 e-) | -1                     | $\rightarrow$ Na <sup>+</sup> (11 prot, 10 e-)  |
| 2A    | Ca (20 prot, 20 e-) | -2                     | $\rightarrow$ Ca <sup>2+</sup> (20 prot, 18 e-) |
| 3A    | Al (13 prot, 13 e-) | -3                     | $\rightarrow$ Al <sup>3+</sup> (13 prot, 10 e-) |

# Ion charges and the Periodic Table

Elements on the **left side of the periodic table** will loose e- in order to form the noble gas configuration.

Groups 1A will lose 1 e-,

2A will lose 2 e-,

**3A** will lose 3 e-. This allows the remaining ion to have the same number of electrons in the outer shell as the noble gas in the previous row.

 $Mg^{2+}$  has 10 e-, Neon; the noble gas also has 10. The noble gas outer electron shell provides for a very stable configuration (the p orbital is filled with 6 electrons).

Elements on the **right side of the periodic table** will gain e- in order to form the noble gas electron configuration. Chlorine, Cl has 7 electrons in the outer shell. By gaining one electron, it has the 8 electron configuration which is very stable, Cl<sup>-</sup>. Oxygen will gain 2 e- to form O<sup>2-</sup>.

**Transition metals** (B-group) form Cations, they will lose e<sup>-</sup>. It is not easy to predict which action it will form. They also may form several different Cations by losing various numbers of e<sup>-</sup>. Examples from a different text book:

| $Cr^{2+}$        | Chromium (II)            | $Cr^{3+}$           | Chromium (III)        |
|------------------|--------------------------|---------------------|-----------------------|
| $Mn^{2+}$        | Mantanese (II)           | $Mn^{3+}$           | Manganese (III)       |
| Fe <sup>2+</sup> | Iron (II) or Ferrous     | Fe <sup>3+</sup>    | Ione (III) or Ferric  |
| $Co^{2+}$        | Cobalt (II)              | $\mathrm{Co}_{3^+}$ | Cobalt (III)          |
| Ni <sup>2+</sup> | Nickel (II)              |                     |                       |
| Cu+              | Copper (I) or Cuprous    | $Cu^{2+}$           | Copper (II) or Cupric |
| Hg <sup>2+</sup> | Mercury (II) or Mercuric |                     |                       |

Nonmetals form negatively charged ions by gaining a number of e- equal to the group number - 8

| Group | Atom                | e- change                  | <b>Resulting non-metal</b> |
|-------|---------------------|----------------------------|----------------------------|
| 5A _  | N (7 prot, 7 e-)    | $8-5=3e- \rightarrow$      | $N^{3+}$                   |
| 6A    | S (16 prot, 16 e-)  | 8 – 6 = 2e- →              | $S^{2+}$                   |
| 7A    | Br (35 prot, 35 e-) | $8 - 7 = 1e - \rightarrow$ | Br-                        |

Hydrogen can lose an e<sup>-</sup>: H - e<sup>-</sup> = H<sup>+</sup> or gain one H + e<sup>-</sup> = H<sup>-</sup> (hydride)

Noble gases rarely react at all!

Polyatomic ions are made up of 2 or more atoms and this collection of atoms as a whole has the



charge. Carbonate, CO32- contains 1 carbon and 3 oxygen atoms

# Polyatomic Ions TABLE 2.4 – Memorize it, This is important!

Table 2.4 Formulas and Names of Some Common Polyatomic Ions

| Formula                                     | Name                                           | Formula                          | Name             |  |  |  |
|---------------------------------------------|------------------------------------------------|----------------------------------|------------------|--|--|--|
| Cation: Positi                              | Cation: Positive Ion                           |                                  |                  |  |  |  |
| NH4 <sup>+</sup>                            | Ammonium ion                                   |                                  |                  |  |  |  |
| Anions: Nega                                | tive Ions                                      |                                  |                  |  |  |  |
| Based on a G                                | roup 4A element                                | Based on a G                     | roup 7A element  |  |  |  |
| CN-                                         | Cyanide ion                                    | Cl0-                             | Hypochlorite ion |  |  |  |
| CH <sub>3</sub> CO <sub>2</sub> -           | Acetate ion                                    | ClO <sub>2</sub> -               | Chlorite ion     |  |  |  |
| CO32-                                       | Carbonate ion                                  | ClO <sub>3</sub> -               | Chlorate ion     |  |  |  |
| HCO <sub>3</sub> -                          | Hydrogen carbonate ion<br>(or bicarbonate ion) | ClO <sub>4</sub> -               | Perchlorate ion  |  |  |  |
| C <sub>2</sub> O <sub>4</sub> <sup>2-</sup> | Oxalate ion                                    |                                  |                  |  |  |  |
| Based on a G                                | roup 5A element                                | Based on a transition metal      |                  |  |  |  |
| NO <sub>2</sub> -                           | Nitrite ion                                    | Cr04 <sup>2-</sup>               | Chromate ion     |  |  |  |
| NO <sub>3</sub> -                           | Nitrate ion                                    | Cr <sub>2</sub> 07 <sup>2-</sup> | Dichromate ion   |  |  |  |
| P04 <sup>3-</sup>                           | Phosphate ion                                  | MnO <sub>4</sub> <sup>-</sup>    | Permanganate ion |  |  |  |
| HPO4 <sup>2-</sup>                          | Hydrogen phosphate ion                         |                                  |                  |  |  |  |
| H <sub>2</sub> PO <sub>4</sub> -            | Dihydrogen phosphate ion                       |                                  |                  |  |  |  |
| Based on a G                                | roup 6A element                                |                                  |                  |  |  |  |
| OH-                                         | Hydroxide ion                                  |                                  |                  |  |  |  |
| S0 <sub>3</sub> <sup>2-</sup>               | Sulfite ion                                    |                                  |                  |  |  |  |
| S04 <sup>2-</sup>                           | Sulfate ion                                    |                                  |                  |  |  |  |
| HSO <sub>4</sub> <sup>-</sup>               | Hydrogen sulfate ion<br>(or bisulfate ion)     |                                  |                  |  |  |  |

# Formulas of Ionic Compounds

Compounds are electrically neutral so Ionic Compounds must have:

# of Cations \* Cation Charge = # of Anions \* Anion Charge

In naming the formula, the Cation is first the Anion is last

NaCl is made up of Na<sup>+</sup> and Cl<sup>-</sup> That's one positive charge and one negative charge

Aluminum Oxide had  $Al^{3+}$  and  $O^{2-}$ . So we need 2  $Al^{3+}$  and 3  $O^{2-}$  there is a total of 6+ and 6-. **DEMONSTRATE NUMBER SWAP METHOD.** 

| Compound       | Ion Com            | bination             |                               |
|----------------|--------------------|----------------------|-------------------------------|
| CaCl2          | $Ca^{2+}$          | 2 Cl-                |                               |
| CaCO3          | $Ca^{2+}$          | CO32-                |                               |
| $Ca_3(PO_4)_2$ | 3 Ca <sup>2+</sup> | 3 PO <sub>4</sub> 3- | <b>DISCUSS PARAENTHESIS!!</b> |

Example 2.4Discuss Lithium Carbonate and Iron II (Ferrous) SulfateDiscuss Sodium Fluoride, Copper II (Cuprous) Nitrate, Sodium AcetateDiscuss Aluminum Fluoride, Sulfide, Nitrate

**<u>Names of Ionic Compounds</u>** (See alternative method at end of these notes)

## Naming of Positive Ions (Cations)

- 1. For monatomic, the name is that of the metal plus the work "cation". Al $^{3+}$  = aluminum cation.
- 2. Some cases, in the transition series, a metal can have more than 1 charge see list above. Name the metal, followed by the Roman Numeral for the charge in parentheses followed by "cation".  $Co^{2+} = Cobalt$  (II) cation  $Co^{3+} = Cobalt$  (III) cation
- 3. NH4<sup>+</sup> is Ammonium cation, NH3 is Ammonia compound

#### Naming the Negative Ions (Anions)

- 1. For monatomic, change the ine to ide. Chlorine  $\rightarrow$  Chloride
- 2. For Polyatomic memorize the common name from table 2.4. Below are the **Oxoanions**

| $ \begin{array}{ccc} ClO_4^- & Per \ chlorate \ ion \\ ClO_3^- & Chlorate \ ion \\ ClO_2^- & Chlorite \ ion \\ ClO_1^- & Hypo \ chlorite \ ion \\ ClO_1^- & Hypo \ chlorite \ ion \\ \end{array} $                                                                             | NO <sub>3</sub> - Nitrate<br>NO <sub>2</sub> - Nitrite                       | SO4 <sup>2-</sup><br>SO3 <sup>2-</sup>                                 | Sulfate<br>Sulfite                                         | ate = larger number of oxygen<br>ite = smaller number of oxygen |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|
| Oxianions with Hydrogen:<br>HPO $_4^{2-}$<br>H $_2PO_4^{-}$ Hydrogen Phosphate ion<br>Dihydrogen Phosphate ionHCO $_3^-$<br>CO $_3^{-}$ Hydrogen Carbonate ion (also called bicarbonate)<br>Carbonate ionHSO $_4^-$<br>HSO $_3^-$ Hydrogen Sulfate ion<br>Hydrogen Sulfate ion | ClO <sub>4</sub><br>ClO <sub>3</sub><br>ClO <sub>2</sub><br>ClO <sub>1</sub> | Per chlo<br>Chlorate<br>Chlorite<br>Hypo cl                            | or <b>ate</b> ion<br>e ion<br>e ion<br>nlor <b>ite</b> ion |                                                                 |
| $HCO_{3}^{-}$ Hydrogen Carbonate ion (also called bicarbonate) $CO_{3}^{-}$ Carbonate ion $HSO_{4}^{-}$ Hydrogen Sulfate ion $HSO_{3}^{-}$ Hydrogen Sulfite ion                                                                                                                | Oxianions with Hydrogen<br>HPC<br>H <sub>2</sub> Pe                          | n:<br>D <sub>4</sub> <sup>2-</sup> Hydroge<br>D <sub>4</sub> - Dihydro | en Phosphate ion<br>gen Phosphate i                        | n<br>ion                                                        |
| $HSO_4^-$ Hydrogen Sulfate ion $HSO_3^-$ Hydrogen Sulfite ion                                                                                                                                                                                                                  | HCC<br>CO <sub>3</sub> -                                                     | 0₃⁻ Hydroge<br>Carbona                                                 | en Carbonate ion<br>te ion                                 | n (also called bicarbonate)                                     |
|                                                                                                                                                                                                                                                                                | HSC<br>HSC                                                                   | 4 <sup>-</sup> Hydrog∉<br>3 <sup>-</sup> Hydrog∉                       | en Sulfate ion<br>en Sulfite ion                           |                                                                 |

# Naming of Ionic Compounds

The name of an ionic compound is the name of the Cation followed by the name of the Anion.

| CaBr <sub>2</sub> | Ca <sup>2+</sup>       | 2 Br-              | Calcium Bromide         |                          |
|-------------------|------------------------|--------------------|-------------------------|--------------------------|
| $NaHSO_4$         | Na+                    | $HSO_4^-$          | Sodium Hydrogen Sulfate | )                        |
| $(NH_4)_2CO_3$    | $2 \text{ NH}_{4}^{+}$ | $CO_{3^{2^{-1}}}$  | Ammonium Carbonate      |                          |
| $Mg(OH)_2$        | $Mg^{2+}$              | 2 OH-              | Magnesium Hydroxide     |                          |
| TiCl <sub>2</sub> | Ti <sup>2+</sup>       | 2 Cl-              | Titanium (II) Chloride  | <b>Transition Metals</b> |
| $CO_2O_3$         | 2 Co <sup>3+</sup>     | 3 O <sup>2-</sup>  | Cobalt (III) Oxide      | <b>Transition Metals</b> |
| PbSO <sub>4</sub> | $Pb^{2+}$              | $SO_{4^{2}}$       | Lead (II) Sulfate       | <b>Transition Metals</b> |
| $Pb(SO_4)_2$      | $Pb^{2+}$              | $2 SO_4^{2-}$      | Lead (IV) Sulfate       | <b>Transition Metals</b> |
| $Fe(NO_3)_3$      | Fe <sup>3+</sup>       | $3 \text{ NO}_3^-$ | Iron (III) Nitrate      | <b>Transition Metals</b> |
| $FE(NO_2)_2$      | Fe <sup>2+</sup>       | $2 \text{ NO}_2^-$ | Iron (II) Nitrate       | <b>Transition Metals</b> |

#### **Properties of Ionic Compounds**

A positively charged particle is attracted to a negatively charged particle



Two positively or two negatively charged particles repel each other. This electrostatic force is described by Coulomb's Law:



# Ionic compound Properties: Hard solids,

Consist of many ions arranged in a 3D **crystal lattice** network Have high melting points  $Al_2O_3$  MP = 2072 °C

What is the difference between Na and Na<sup>+</sup>?

Is a Compound ionic: Metal containing compounds are ionic

If there is no metal, it is not ionic

One exception is for compounds with polyatomic cations like  $NH_{4^+}$  (What is the difference between  $NH_{4^+}$  and  $NH_3$ )

# 2.8 Molecular Compound Properties:

- They are not ionic (separate + and charges), they are molecular (no charges) all atoms are joined together as one compound and they do not separate, even in solutions. Example Ethyl Alcohol H<sub>3</sub>C-CH<sub>2</sub>OH
- Can be solid, liquid or gas (higher mw tend to be solids)
- Can have complicated formulae
- Are formed from Non-Metals (usually from Groups 4A -> 7A, with or without Hydrogen)

Two nonmetals join to form a **Binary Compound** (Binary = 2) HBr

George W.J. Kenney, Jr.

**Naming Binary Compounds:** put elements in order of increasing group number. Use the following prefixes:

| 1 | mono  | 6  | hexa  |
|---|-------|----|-------|
| 2 | di    | 7  | hepta |
| 3 | tri   | 8  | octa  |
| 4 | tetra | 9  | nona  |
| 5 | penta | 10 | deca  |

You do not include Mono for a single cation:

NF3 is Nitrogen trifluoride not MonoNitrogen trifluoride

HF Hydrogen Fluoride (Hydrofluoric Acid)H2S Hydrogen Sulfide (DiHydrogen Sulfide)

HCl Hydrogen Chloride (Hydrochloric Acid)

Nitrous Oxide

Water

| NF3          | Nitrogen Trifluoride            | PCl3  | Phosphorus 7 | Frichloride   |
|--------------|---------------------------------|-------|--------------|---------------|
| NO           | Nitrogen Monoxide not Monooxide | PCl5  | Phosphorus 1 | Pentachloride |
| NO2          | Nitrogen Dioxide                | SF6   | Sulfur Hexaf | luoride       |
| N20          | Dinitrogen Monoxide             | S2F10 | Disulfur Dec | afluoride     |
| N2O4         | Dinitrogen Tetraoxide           |       |              |               |
|              |                                 |       |              |               |
| Comn         | non Names                       |       |              |               |
| CH4          | Methane                         |       | N2H6         | Hydrazine     |
| $C_{2}H_{6}$ | Ethane                          |       | PH3          | Phosphine     |
| C3H8         | Propane                         |       | NO           | Nitric Oxide  |

**2.9 The Mole** The Mole is the # of atoms in exactly 12.00... g of Carbon 12, <sup>12</sup>C

1 mole = 6.0221415 x 10<sup>23</sup> Particles = Avogadro's Number

Ammonia (not Ammonium NH4<sup>+</sup>)

#### Molar Mass, M in g/mol

Butane

C4H10

NH3

The Molar Mass is the weight in grams of 6.0221415 x 10<sup>23</sup> Particles of an element. See Periodic Table

N20

H2O

# Number of Moles = wt in g / Mw of the compound

| DISCUSS WHY WE NEED MOLES             | $C + 4H \rightarrow CH4$ (atoms, moles, g) |  |
|---------------------------------------|--------------------------------------------|--|
| Also shows the amount of Hydrogen tha | at will react with an amount of Carbon     |  |

| The molar mass of Sodium (Na) | M = 22.99 g/mole = $6.0221415 \times 10^{23}$ Pa | irticles of Sodium |
|-------------------------------|--------------------------------------------------|--------------------|
|                               |                                                  |                    |

The molar mass of Lead (Pb) is  $M = 207.2 \text{ g/mole} = 6.0221415 \text{ x } 10^{23} \text{ Particles of Lead}$ 

**Mass to moles** # moles = Mass (weight in grams) / molar mass (see Periodic Table)

# moles in 5.0 g of Sodium (Na) # moles = 5.0 g / 22.99 g/mole = 0.21748 = 0.22 mole

# of g in 1.2 moles of Na #g = 1.2 moles \* 22.99 g/mole = 27.588 = 28. g of Na

#### NOTE SIG FIG, derive the formulae as needed

How many moles are in 16.5 g of oxalic acid?  $H_2C_2O_6$ 

One mole of unpopped popcorn would cover the USA 9 miles deep

**Example 2.6** What mass of lead, in grams, is equivalent to 2.50 mol of Pb? What amount of tin is represented by 36.6 g of Sn?

OCOCH<sub>s</sub> Aspirin

Determine the Molar Mass of Water? Of Aspirin  $C_9H_8O_4$ 

Determine the Molar Mass of Copper (II) Chloride dihydrate

# 2.10 Formulas

## Percent Composition, Shows the % of each element in the compound (CHN Analysis)

| 1.000 mol of Ammonia | 1-N          |           | 14.007  | g/mole                             |
|----------------------|--------------|-----------|---------|------------------------------------|
|                      | 3 <b>-</b> H | 3 * 1.008 | 3.0237  | <u>g/mole</u>                      |
|                      |              | NH3       | 17.0307 | g/mole = 17.031 g/mole <b>(SD)</b> |

NH3 weighs 17.031 g and contains 1.000 mole or 14.007 g of N and 3.000 mole or 3.0237 g of H. The Mass % of each element is:

Mass % of N in NH3 = 100 % \* 14.007 g N / 17.031 g NH3 = 82.244 % N or 82.244 g of N for each 100 g of NH3

Mass % of H in NH3 = 100 % \* 3.0237 g H / 17.031 g NH3 = 17.755 % H Or 17.755 g of H for each 100 g of NH3

**Example 2.8** What is the mass % of each element in propane  $-C_3H_8$  -  $H_3C$ -CH<sub>2</sub>-CH<sub>3</sub>

**% Composition** is used in Organic Chemistry to help verify the synthesis of the correct compound **DISCUSS** 

# Empirical Formulae from % Composition

- Reverse the above procedure: 1. Convert Mass Percent to mass  $(\% \rightarrow g)$ 
  - 2. Convert mass to moles
  - 3. Fine the mole ratio of each element
  - 4. Determine the empirical formulae

#### SEE ADDITIONAL PROBLEMS AT END

Hydrazine shows the following CHN analysis: 87.42% N, 12.58% H. What is its empirical formulae?

- 1. 87.42 % N = 87.42 g N 12.58% H = 12.58 g H
- 2. 87.42 g N / 14.007 g/mol N = 6.241 mol N 12.58 g H/1.0079 g/mol H = 12.48 mol H (SD)
- 3. Divide by the smallest 6.241 mol N / 6.241 mol N = 1 N

12.48 mol H / 6.241 mol N = 2.00 H for every N

# **Empirical Formulae** = $N_1H_2$

Empirical Formulae is the simplest whole number ratio of atoms in a formulae

But, the molar mass of Hydrazine is 32.0 g/mole. The molar mass of  $N_1H_2$  is 16.0 g/mol

So the **Molecular Formulae** of Hydrazine is 32.0 g/mole / 16.0 g/mol or 2 times Empirical Formula or N2H4

## DISCUSS THE 1.5 AND 1.3 RULE

**IE 2.10** 1.250 g Bromine reacts with Ozone (O3) to form 1.876 g  $Br_xO_y$ . What are the values for x and y.

## **Example 2.11** Sn + I2 $\rightarrow$ Sn<sub>x</sub>I<sub>y</sub>

Start with 1.056 g Sn. After the reaction is complete, there is an of excess Sn of 0.601 g The starting amount of I2 is 1.947 g. It's all used up. What is the empirical formula of the product?

#### **Mass Spec**

#### **DISCUSS HOW IT WORKS – see picture above.**

Mass Spec can give the exact mw of the parent molecule minus 1 e-.

#### R → R+

This exact mw can be used along with a CHN analysis to determine the Molecular Formulae of a molecule – see examples in book

**2.11 Hydrated Compounds** are compounds in which water molecules are associated with the ions of the compound. The water is not chemically (ionic or covalent) bonded.

Copper sulfate are blue crystals: CuSO4 • 5 H2O, Copper (II) Sulfate Pentahydrate. Heating blue copper sulfate crystals gives the anhydrous CuSO4.

CuCl2 • 2 H2O is Copper (II) Chloride dihydrate

Wallboard is CaSO4 • 2 H2O Heating it gives Plaster of Paris CaSO4 • ½ H2O

Cobalt (II) Chloride, CoCl2 • 6 H2O is a red solid, heating it gives the anhydrous blue CoCl2. These crystals are commonly placed in a small plastic bag as an indicator for moisture.

| 1 0 | 1<br>1<br>1.008<br>1.008<br>1.008<br>1.008 | Alkalin<br>earth<br>metals<br>2A<br>4<br>86<br>9.012 |                 |                    |           |                    |                           |                    |                    |                    |                    |            | 3A<br>5<br>10.81  | 4A<br>6<br>C<br>12.01 | 5A<br>7<br>N<br>14.01 | Ha<br>6A<br>8<br>16.00 | logens<br>7A<br>9<br>19.00 | Noble<br>gases<br>8A<br>8A<br>8A<br>4.003<br>4.003<br>10<br>Ne<br>Ne |
|-----|--------------------------------------------|------------------------------------------------------|-----------------|--------------------|-----------|--------------------|---------------------------|--------------------|--------------------|--------------------|--------------------|------------|-------------------|-----------------------|-----------------------|------------------------|----------------------------|----------------------------------------------------------------------|
| 3   | 11<br>Na<br>22.99                          | 12<br>Mg<br>24.31                                    |                 |                    |           | Tre                | ansitio                   | n met              | als                |                    |                    | (          | 13<br>AI<br>26.98 | 14<br>Si<br>28.09     | 15<br>P<br>30.97      | 16<br>S<br>32.07       | 17<br>CI<br>35.45          | 18<br>Ar<br>39.95                                                    |
| 4   | 19                                         | 20                                                   | 21              | 22                 | 23        | 24                 | 25                        | 26                 | 27                 | 28                 | 29                 | 30         | 31                | 32                    | 33                    | 34                     | 35                         | 36                                                                   |
|     | <b>K</b>                                   | Ca                                                   | Sc              | TI                 | V         | Cr                 | Mn                        | Fe                 | Co                 | Ni                 | Cu                 | Zn         | Ga                | Ge                    | AS                    | Se                     | Br                         | <b>Kr</b>                                                            |
|     | 39.10                                      | 40.08                                                | 44.96           | 47.88              | 50.94     | 52.00              | 54.94                     | 55.85              | 58.93              | 58.69              | 63.55              | 65.38      | 69.72             | 72.59                 | 74.92                 | 78.96                  | 79.90                      | 83.80                                                                |
| 5   | 37                                         | 38                                                   | 39              | 40                 | 41        | 42                 | 43                        | 44                 | 45                 | 46                 | 47                 | 48         | 49                | 50                    | 51                    | 52                     | 53                         | 54                                                                   |
|     | <b>Rb</b>                                  | Sr                                                   | ¥               | Zr                 | Nb        | Mo                 | Tc                        | <b>Ru</b>          | <b>Rh</b>          | Pd                 | Ag                 | Cd         | In                | Sn                    | <b>Sb</b>             | Te                     | I                          | Xe                                                                   |
|     | 85.47                                      | 87.62                                                | 88.91           | 91.22              | 92.91     | 95.94              | (98)                      | 101.1              | 102.9              | 106.4              | 107.9              | 112.4      | 114.8             | 118.7                 | 121.8                 | 127.6                  | 126.9                      | 131.3                                                                |
| 9   | 55                                         | 56                                                   | 57              | 72                 | 73        | 74                 | 75                        | 76                 | 77                 | 78                 | 79                 | 80         | 81                | 82                    | 83                    | 84                     | 85                         | 86                                                                   |
|     | Cs                                         | Ba                                                   | La <sup>*</sup> | Hf                 | Ta        | W                  | Re                        | 05                 | Ir                 | Pt                 | Au                 | <b>Hg</b>  | T1                | Pb                    | Bi                    | Po                     | At                         | <b>Rn</b>                                                            |
|     | 132.9                                      | 137.3                                                | 138.9           | 178.5              | 180.9     | 183.9              | 186.2                     | 190.2              | 192.2              | 195.1              | 197.0              | 200.6      | 204.4             | 207.2                 | 209.0                 | (209)                  | (210)                      | (222)                                                                |
| 7   | 87<br>Fr<br>(223)                          | 88<br>Ra<br>226                                      | 89<br>Ac**      | 104<br>Rf<br>(261) | 105<br>Db | 106<br>5g<br>(263) | 107<br><b>Bh</b><br>(264) | 108<br>Hs<br>(265) | 109<br>Mt<br>(268) | 110<br>Ds<br>(271) | 111<br>Rg<br>(272) | 112<br>Uub | 113<br>Uut        | 114<br>Uuq            | 115<br>Uup            |                        |                            |                                                                      |

George W.J. Kenney, Jr.

# EXTRA NOTES

#### Nuclear Model of the Atom

**Rutherford** Alpha Particle Source  $\rightarrow$  Lead Plate with a hole  $\rightarrow$  hits a gold foil  $\rightarrow$  -> Circular Zinc Sulfide Screen

Found 99.95% of the mass of the atom is the positively charged center

Or If a golf ball represented the nucleus, the electron shell would be 3 miles in diameter







# 1

3

2

#### How to etermine the charges on the Cation and Anion, you need to memorize these

| Cation | Group 1A   | Alkali Metals                           | +1 | Li, Na, K, Rb, Cs  |
|--------|------------|-----------------------------------------|----|--------------------|
|        | Group IIA  | Alkaline Earth Metals                   | +2 | Be, Mg, Ca, Sr, Ba |
|        | Group IIIA | Some Transition Metals                  | +3 | Al, Ga, In, Tl     |
| Anion  | Group 8A   | Noble Gases do not form ionic compounds |    |                    |
|        | Group 7A   | Halogens                                | -1 | F, Cl, Br, I       |

From EBBING's book the list of transitions metals

# The are 3 rules for naming

# Type 1Group 1 and 2 Metals

# [ Metal has only one charge ]

1. Cation named first, then the Anion 2<sup>nd</sup>

2. Simple Cation [ single atom ] takes the name from the element Na<sup>+</sup> = Sodium

3. Simple Anion named taking the 1<sup>st</sup> part of the element name, **remove the -ine** and add **–ide if it's a halogen.** 

#### e.g. NaCl = Sodium Chloride

# Type II Transitions Metals [Metal can have more than one charge ]

1. Cation is always named 1<sup>st</sup>, then the Anion

2. Cation can assume more than one charge – specify the charge with Roman Numerals  $Cu^{+1}$  and  $Cu^{+2}$  = Copper (I) and Copper (II)  $FeCl_3 = Iron (III)$  Chloride  $FeCl_2 = Iron (II)$  Chloride

# Type III Binary Compounds containing NonMetals [No Metals]

- 1. The  $1^{st}$  element is named first and the full name is used
- 2. The  $2^{nd}$  element is named as if it were an ANION [ ide ]
- 3. Prefixes donate the number of atoms present
- 4. Prefix MONO is NEVER used for the 1st element [ See Table 2.7 p 68 ]

| 1. Mono | 3. Tri   | 5. Penta | 7. Hepta |
|---------|----------|----------|----------|
| 2. Di   | 4. Tetra | 6. Hexa  | 8. Octa  |



# To help with the <u>PolyAtomics</u>, try grouping them:

Hypochlorite $ClO^-$ Chlorite $ClO_2^-$ Chlorate $ClO_3^-$ Perchlorate $ClO_4^-$ George W.J. Kenney, Jr.

Hypo comes first **ite comes before ate** ate comes after ite Per is last Page 17 of 19 Note order is by increasing number of Oxygen from  $1 \rightarrow 4$ 

26-Aug-13 Chapter 2

# **CHN Calculations Procedure:**

1. If the values are given in grams or milligrams, change the units to %.

2. Add up all of the percentages. If it does not equal 100%, then the remaining is assumed to be Oxygen. Put Oxygen into your calculations.

- 3. Divide each of the percentages by the elemental weight for that element
- 4. Divide all of those numbers by the smallest number
- 5. These numbers represent the relative ratio of each of the elements.

If at least one number ends in 0.9, 0.0 or 0.1 go with those numbers

If at least one number ends in 0.2, 0.3 or 0.7 or 0.8 then multiply all of the numbers by 3

If at least one number ends in 0.4, 0.5 or 0.6, then multiply all of the numbers by 2

# **Empirical Formulae** – simplest formula. Shows the simplest ratios of numbers of the atoms **Molecular Formulae from Empirical Formulae**Need molecular weight

**P 120, 3.95** MothBalls – para-dichlorobenzene has the composition: C 49.1%, H 2.7%, Cl 48.2% and a molecular weight of 147. What is its molecular formulae?

**SPECIAL PROBLEM** An organic compound was found to have the following composition: C 92.15 %, H 7.84 %. Two separate determinations of the molecular weight found it to be approximately 25 g/mole and a second trail gave 79 g/mole. What Molecular Formula would support these two molecular weights?

# <u>Table 3.1</u>

Acetylene has an empirical formula of CH and a molecular formula of  $C_2H_2$ .

**Benzene** has an empirical formula of CH and a molecular formula of  $C_6H_6$ .

1. Calculate the % of C and H in each?

2. If you were given this %C and %H, how would you differentiate between acetylene and benzene?

**Exercise 3.11** A sample of Benzoic Acid gave the following analysis: C 68.8% and H 5.0%. What is the empirical formula?

The % add up to 68.8 + 5.0 = 73.8. Therefore it is assumed that O is 100% - 73.8% = 26.2%.

| С | 68.8 / 12.01 | = 5.73 | 5.73 / 1.64 = 3.49 | 3.49 * 2 = 6.98 or @ 7 |
|---|--------------|--------|--------------------|------------------------|
| Η | 5.0 / 1.008  | = 4.96 | 4.96 / 1.64 = 3.02 | 3.02 * 2 = 6.04 or @ 6 |
| 0 | 26.2 / 16.00 | = 1.64 | 1.64 / 1.64 = 1    | 1 * 2 = 2              |

# Therefore the empirical formula is C<sub>7</sub>H<sub>6</sub>O<sub>2</sub>

**Example 3.12** An acetic acid sample has C 39.9%, H 6.7% and a molecular weight of approximately 60.0 g/mol. What is the molecular formula?

Again, the % add up to 39.9 + 6.7 = 46.6. Therefore it is assumed that O is 100% - 46.6% = 54.5%

| С | 39.9 / 12.01 | = 3.32 | 3.32 / 3.32 = 1    | Empirical Formulae = $C_1H_2O$ |
|---|--------------|--------|--------------------|--------------------------------|
| Η | 6.7 / 1.008  | = 6.65 | 6.65 / 3.32 = 2.00 |                                |
| 0 | 54.5 / 16.00 | = 3.41 | 3.41 / 3.32 = 1.03 |                                |

George W.J. Kenney, Jr.

| 0                          | 1 ~ 10.00 | $\frac{10.00}{30.026} = 30$ | .03 g/ mole |
|----------------------------|-----------|-----------------------------|-------------|
| 0                          | 1 * 16 00 | 16.00                       |             |
| Н                          | 2 * 1.008 | 2.016                       |             |
| Empirical Formula Weight = | C 1 * 1   | 2.01 12.01                  |             |
|                            |           |                             |             |

The molecular weight is 60.00, the empirical formula weight is 30.03, so 60.00 / 30.03 = 2. Multiply the empirical formula by 2 to get the **molecular formula** =  $C_2H_4O_2$